

D8555N

100% AV_{ds} TESTED!

100% UIS TESTED!

BV _{DSS}	30		V
I _D @V _{GS} =10V, T _C =25°C	8	Α	
R _{DSON} , T _C =25°C	Тур	Max	
@V _{GS} =10V, I _D =30A	4.5	5.5	m-0
@V _{GS} =4.5V, I _D =20A	5.5	7.0	mΩ

Features

- Super Low Gate Charge
- Green Device Available
- Excellent CdV/dt effect decline
- Advanced Trench technology

Equivalent Circuit	TO-252	Marking & Pin Assignment	
G OFFICE S		D8555N xxxx xxxx G D S	

Package Marking and Ordering Information

Device Name	Marking	Device Package	Quantity
HMD8555N	D8555N	TO-252	2500/Reel

Table 1. Absolute Maximum Ratings (TA=25°C)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-Source Voltage (V _{GS} =0V)	30	V
Vgs	Gate-Source Voltage (VDS=0V)	±20	V
1	Drain Current-Continuous (Tc =25°C) ¹	85	Α
I _D (DC)	Drain Current-Continuous (Tc =100°C) ¹	58.5	Α
I _{DM (pulse)}	Drain Current-Continuous@ Current-Pulsed ²	340	Α
P _D	Maximum Power Dissipation (Tc=25°C) 4	81	W
Eas	Single Pulse Avalanche Energy ³	225	mJ
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 To 150	$^{\circ}$

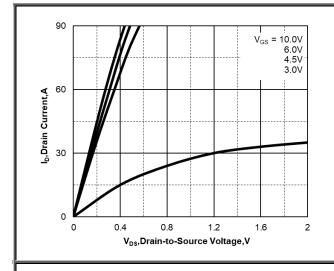
Table 2. Thermal Characteristic

Symbol	Parameter	Max	Unit		
R ₀ JC	Thermal Resistance Junction-Case ¹	1.85	°C/W		

D8555N Datasheet V2.0

30V N-Channel Power MOSFET

Table 3. Electrical Characteristics (TA=25°C unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Stat	tes					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250µA	30			V
IDSS	Zero Gate Voltage Drain Current(Tc=25°C)	V _{DS} =30V, V _{GS} =0V				μA
Igss	Gate-Body Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250μA	1.0	1.5	2.5	V
R _{DS(ON)}	Drain-Source On-State Resistance ²	V _{GS} =10V, I _D =30A		4.5	5.5	mΩ
KDS(ON)	Drain-Source On-State Resistance -	V _{GS} =4.5V, I _D =20A		5.5	7.0	mΩ
Dynamic C	haracteristics					
R_{G}	Gate Resistance	V _{DS} =0V, V _{GS} =0V		2.0		Ω
110		f=1.0MHz		2.0		
Ciss	Input Capacitance	V _{DS} =15V, V _{GS} =0V		2230		PF
Coss	Output Capacitance	f=1.0MHz		300		PF
C_{rss}	Reverse Transfer Capacitance			275		PF
Switching	Times					
t _{d(on)}	Turn-on Delay Time	V _{DS} =15V, V _{GS} =10V,		7.0		nS
tr	Turn-on Rise Time	$I_{D}=20A$,		14.0		nS
$t_{\text{d(off)}} \\$	Turn-Off Delay Time	$R_{G} = 2.0\Omega$		35.0		nS
t f	Turn-Off Fall Time	NG -2.012		12.0		nS
Q_g	Total Gate Charge	V _{DS} =15V, V _{GS} =10V,		42.5		nC
Q_{gs}	Gate-Source Charge	$I_{D}=20A$		7.0		nC
Q_{gd}	Gate-Drain Charge	ID=20A		12.0		nC
Source-Dra	ain Diode Characteristics					
I _{SD}	Source-Drain Current (Body Diode) ^{1.5}				85	Α
V_{SD}	Forward On Voltage ²	I _{SD} =20A, V _{GS} =0V, T _J =25℃			1.2	V
t _{rr}	Reverse Recovery Time	T _J =25°C I _F =20A,		14		nS
Qrr	Reverse Recovery Charge	di/dt=100A/µs		5		nC
t _{on}	Forward Turn-on Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS +LD)				

Notes:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq\!300\text{us}$, duty cycle $\leq\!2\%.$
- 3. The test condition is V_{DD} =20V, V_{GS} =10V, L=0.5mH, I_{AS} =30A.
- 4. The power dissipation is limited by 175°C junction temperature.
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

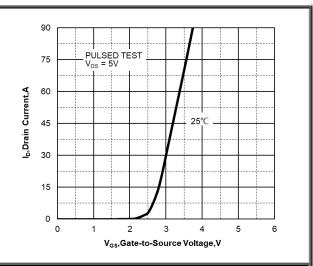


Fig1: Typical Output Characteristics

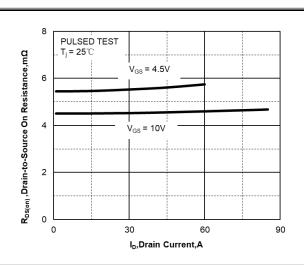


Fig 2: Typical Transfer Characteristics

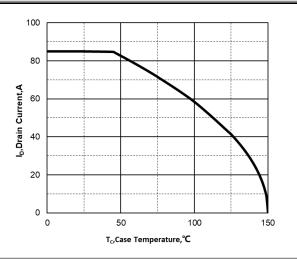


Fig 3: On-Resistance VS. Drain Current

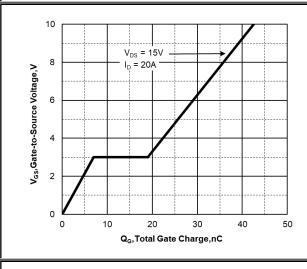


Fig 4: Maximum Continuous Drain Current VS. Case Temperature

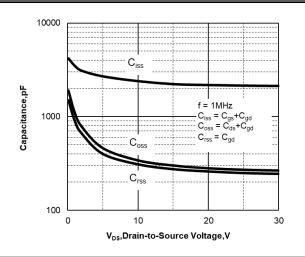
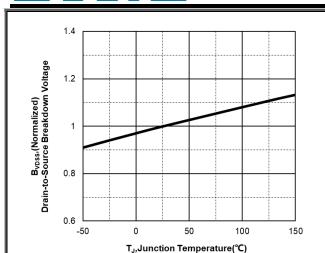
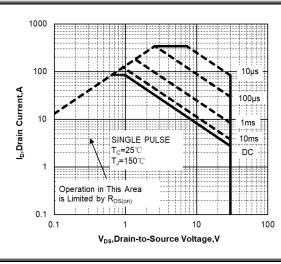



Fig 5: Gate Charge Characteristics

Fig 6: Capacitance Characteristics

D8555N Datasheet V2.030V N-Channel Power MOSFET



2.4 PULSED TEST V_{GS} = 10V PU

Fig 7: Normalized Breakdown Voltage VS. Junction Temperature

Fig 8: Normalized on Resistance VS.

Junction Temperature

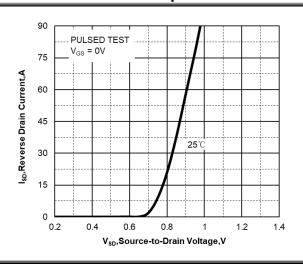


Fig 9: Maximum Safe Operating Area

Fig 10: Body Diode Forward
Characteristics

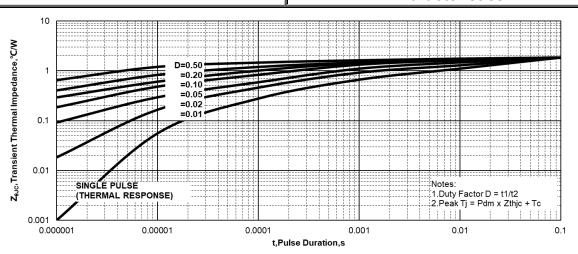


Fig.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vgs Qg Qgd Qgs Qgd Charge

Fig 12: Gate Charge Test Circuit and Waveforms

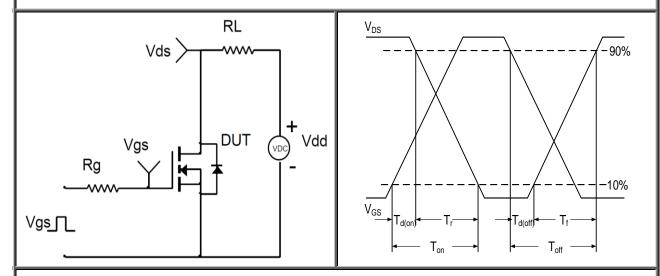


Fig 13: Resistive Switching Test Circuit and Waveforms

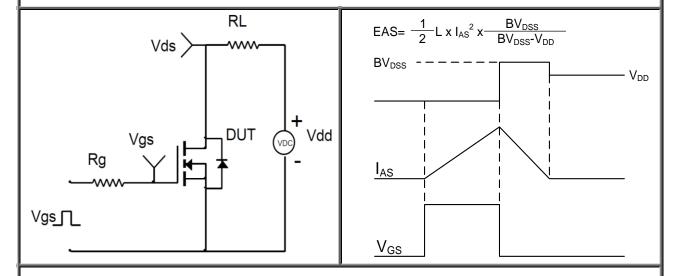
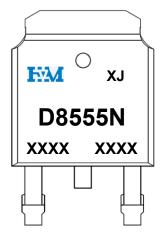
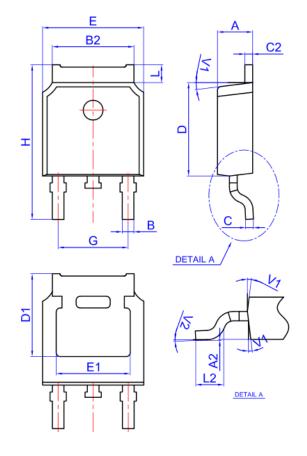



Fig 14: Unclamped Inductive Switching Test Circuit and Waveforms

Marking Information


1st line: HM Logo (left) Coding (right) Changed with Machine Table 2nd line: Device Package and Part Number and Channel and Version

3rd line: Lot number And Date code (XXXX XXXX)

① XXXX: Wafer Lot Number Code Changed with Lot Number

② XXXX: Date code changed with Date Number, Factory Number

TO-252 Dimension

	Dimensions					
Ref.	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF		0.209REF			
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Suzhou HuaMeiYiXin does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Suzhou HuaMeiYiXin.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Suzhou HuaMeiYiXin products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Suzhou HuaMeiYiXin for any damages arising or resulting from such use or sale.

Suzhou HuaMeiYiXin disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Suzhou HuaMeiYiXin's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Suzhou HuaMeiYiXin Semiconductor CO., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Suzhou HuaMeiYiXin products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Suzhou HuaMeiYiXin believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.